An Ultrasound Robotic System Using the Commercial Robot UR5

نویسندگان

  • Kim Mathiassen
  • Jørgen Enger Fjellin
  • Kyrre Glette
  • Per Kristian Hol
  • Ole Jakob Elle
چکیده

The use of robots in health care has increased dramatically over the last decade. One area of research has been to use robots to conduct ultrasound examinations, either controlled by a physician or autonomously. This paper examines the possibility of using the commercial robot UR5 from Universal Robots to make a tele-operated robotic ultrasound system. Physicians diagnosing patients using ultrasound probes are prone to repetitive strain injuries, as they are required to hold the probe in uncomfortable positions and exert significant static force. The main application for the system is to relieve the physician of this strain by letting the them control a robot that holds the probe. A set of requirements for the system is derived from the state-of-the-art systems found in the research literature. The system is developed through a low-level interface for the robot, effectively building a new software framework for controlling it. Compliance force control and forward flow haptic control of the robot was implemented. Experiments are conducted to quantify the performance of the two control schemes. The force control is estimated to have a bandwidth of 16.6 Hz, while the haptic control is estimated to have a bandwidth of 65.4 Hz for the position control of the slave and 13.4 Hz for the force control of the master. Overall, the system meets the derived requirements and the main conclusion is that it is feasible to use the UR5 robot for robotic ultrasound applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly

Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...

متن کامل

Position Control of BIGSS Lab Snake for Revision Total Hip Arthroplasty (THA) Surgery

 The BIGSS lab is developing a minimally-invasive surgical workstation to treat the osteolytic lesions using using a snake like dexterous manipulator (SDM).  The SDM will be positioned in the workspace by a robotic arm.  The focus of this project is integrating the SDM with the robotic armwhich is a 6 DOF Universal Robot (UR5) and position control of the tip of the SDM inside the lesion area.

متن کامل

Improvement of position measurement for 6R robot using magnetic encoder AS5045

Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Front. Robotics and AI

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016